Polynomials taking integer values on primes in a function field

نویسندگان

چکیده

Let $\mathbb{F}_q[x]$ be the ring of polynomials over a finite field $\mathbb{F}_q$ and $\mathbb{F}_q(x)$ its quotient field. $\mathbb{P}$ set primes in $\mathbb{F}_q[x]$, let $\mathcal{I}$ all $f$ for which $f(\mathbb{P})\subseteq\mathbb{F}_q[x]$. The existence basis is established using notion characteristic ideal; this shows that free $\mathbb{F}_q[x]$-module. Through localization, explicit shapes certain bases localization are derived, well-known procedure described as to how obtain forms some $\mathcal{I}$.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Results on the Field of Values of Matrix Polynomials

In this paper, the notions of pseudofield of values and joint pseudofield of values of matrix polynomials are introduced and some of their algebraic and geometrical properties are studied.  Moreover, the relationship between the pseudofield of values of a matrix polynomial and the pseudofield of values of its companion linearization is stated, and then some properties of the augmented field of ...

متن کامل

On common values of lacunary polynomials at integer points

For fixed ` ≥ 2, fixed positive integers m1 > m2 with gcd(m1,m2) = 1 and n1 > n2 > · · · > n` with gcd(n1, . . . , n`) = 1, and fixed rationals a1, a2, . . . , a`+1, b1, b2 which are all nonzero except for possibly a`+1, we show the finiteness of integral solutions x, y of the equation a1x n1 + · · ·+ a`x` + a`+1 = b1y + b2y , when n1 ≥ 3, m1 ≥ 2`(` − 1), and (n1, n2) 6= (m1,m2). In relation to...

متن کامل

Square-free values of polynomials over the rational function field

Article history: Received 23 August 2013 Accepted 23 August 2013 Available online xxxx Communicated by K. Soundararajan

متن کامل

On integer Chebyshev polynomials

We are concerned with the problem of minimizing the supremum norm on [0, 1] of a nonzero polynomial of degree at most n with integer coefficients. We use the structure of such polynomials to derive an efficient algorithm for computing them. We give a table of these polynomials for degree up to 75 and use a value from this table to answer an open problem due to P. Borwein and T. Erdélyi and impr...

متن کامل

On Primes Represented by Quadratic Polynomials

This is a survey article on the Hardy-Littlewood conjecture about primes in quadratic progressions. We recount the history and quote some results approximating this hitherto unresolved conjecture. Mathematics Subject Classification (2000): 11L07, 11L20, 11L40, 11N13, 11N32, 11N37

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Turkish Journal of Mathematics

سال: 2023

ISSN: ['1303-6149', '1300-0098']

DOI: https://doi.org/10.55730/1300-0098.3413